Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTANI1/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Potenza, M. N., Stibrany, R. T., Potenza, J. A. \& Schugar, H. J. (1992). Acta Cryst. C48, 454-457.
Tuntulani, T., Reibenspies, J. H., Farmer, P. J. \& Darensbourg, M. Y. (1992). Inorg. Chem. 31, 3497-3499.

Acta Cryst. (1996). C52, 2734-2736

# Tris\{2-[(4-chlorophenyl)iminomethyl]-pyrrolato- $\left.N, N^{\prime}\right\}$ cobalt(III) 

J. A. Castro, J. Romero, J. A. García-Vázquez, A. Sousa* and A. Castiñerras

Departamento de Quimica Inorgánica, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Spain.E-mail: qiac01@usc.es
(Received 6 November 1995; accepted 2 July 1996)


#### Abstract

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}_{2}\right)_{3}\right]$, consists of monomeric molecules in which the central $\mathrm{CoN}_{6}$ unit has slightly distorted octahedral geometry, with bond lengths ranging from 1.900 (8) to 1.991 (7) $\AA$. . In the complex, the ligands adopt positions such that the complex can be described as the meridional isomer.


## Comment

Metal complexes with Schiff base ligands containing weak acid groups can be satisfactorily synthesized following an electrochemical procedure similar to that described by Oldham \& Tuck (1982). Starting from metallic cobalt as the anode of an electrochemical cell containing the Schiff base dissolved in acetonitrile, the title compound, (I), was obtained.


(I)
© 1996 International Union of Crystallography Printed in Great Britain - all rights reserved

The Co atom is coordinated to three bidentate anionic ligands; the environment around the metal atom can be described as having slightly distorted octahedral geometry, with the angles defined by two trans-N atoms close to the expected value of $180^{\circ}$ [177.8(3), 174.7 (3) and $\left.174.8(3)^{\circ}\right]$ and the angles determined by the Co and two cis-N atoms close to $90^{\circ}$ (Fig. 1). The $\mathrm{Co}-\mathrm{N}$ (pyrrole) bond distances [average 1.911 (8) $\AA$ ] are shorter than the $\mathrm{Co}-\mathrm{N}$ (azomethine) bond distances [average 1.965 (7) Å]. These values are similar to those of the corresponding bonds found in cobalt(III) complexes with similar ligands (Castro et al., 1992). In the title complex, the ligands adopt positions such that the complex can be described as the meridional isomer. Three signals in the ${ }^{1} \mathrm{H}$ NMR spectrum at $7.73,7.62$ and 7.59 p.p.m., attributable to the three non-equivalent imine protons, indicate that this coordination is maintained in solution. In the complex, the chelate $\mathrm{Co}-\mathrm{N}-$ $\mathrm{C}-\mathrm{C}-\mathrm{N}$ rings are almost planar, the maximum deviation being $0.053 \AA$, and the bond distances and angles of these rings are as expected; in particular, the average value of the $\mathrm{C}-\mathrm{N}$ bond length $[1.31$ (2) $\AA$ A is typical for a $\mathrm{C}=\mathrm{N}$ bond. Although the three ligands are very similar in terms of their bond distances and angles and the pyrrole and phenol rings are planar, the angles between the planes are 56.6 (4), 77.6 (4) and 56.6 (4) in ligands $A$ (N11 and N12 donor atoms), $B$ (N21 and N 22 donor atoms) and $C$ (N31 and N32 donor atoms), respectively. The angles between the planes of each pyrrole ring and the plane composed of atoms Co, N11, N12, N22 and N 31 are $7.75(4), 81.4(4)$ and $82.5(4)^{\circ}$ for ligands $A$, $B$ and $C$, respectively; the pyrrole ring of ligand $A$ is thus almost coplanar with this coordination plane, while the pyrrole rings of the $B$ and $C$ ligands are almost perpendicular to it. It is interesting to note that only the A ligand can influence the fac/mer isomerization (by exchange of N -atom positions).


Fig. 1. The molecular structure of (I) showing $50 \%$ probability displacement ellipsoids. H atoms have been omitted for clarity.

## Experimental

The electrochemical oxidation of a cobalt anode in an acetonitrile solution ( 50 ml ) containing the Schiff base ( 0.46 g ) and tetramethylammonium perchlorate ( $c a .10 \mathrm{mg}$ ) for 2 h at 24 V and 20 mA , resulted in the loss of 46.8 mg of cobalt from the anode and formation of a deep-red solution. After filtration to remove any solid impurities, a well crystallized solid was obtained upon evaporation of the solvent at room temperature. The compound is diamagnetic, this being consistent with a low-spin $d^{6}$ octahedral complex.

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}_{2}\right)_{3}\right]$
$M_{r}=669.89$
Monoclinic
$P 2_{1} / n$
$a=9.166(2) \AA$
$b=35.341$ (4) $\AA$
$c=10.101$ (3) $\AA$
$\beta=110.65(1)^{\circ}$
$V=3061.8(7) \AA^{3}$
$Z=4$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: refined from $\Delta F$
(DIFABS; Walker \& Stuart, 1983) $T_{\text {min }}=0.37, T_{\text {max }}=0.85$
8649 measured reflections
7727 independent reflections

## Refinement

Refinement on $F$
$R=0.052$
$w R=0.059$
$S=2.92$
2103 reflections
389 parameters
H atoms: see below
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=4.9-10.0^{\circ}$
$\mu=0.86 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.65 \times 0.25 \times 0.20 \mathrm{~mm}$ Amber
2103 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 48$
$l=-13 \rightarrow 13$
2 standard reflections
frequency: 120 min
intensity decay: none
$\Delta \rho_{\max }=0.32 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Extinction correction:
Zachariasen (1963)
Extinction coefficient: $2.085 \times 10^{-8}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| Co | 0.0887 (1) | 0.11226 (3) | 0.1201 (1) | 0.0320 (5) |
| CII | 0.0450 (4) | 0.26468 (8) | -0.3917 (3) | 0.089 (2) |
| C12 | 0.8431 (3) | 0.02892 (9) | 0.5312 (3) | 0.074 (2) |
| Cl 3 | 0.5604 (4) | 0.2057 (1) | 0.7830 (3) | 0.097 (2) |
| NII | 0.0041 (8) | 0.1218 (2) | 0.2663 (7) | 0.035 (3) |
| N12 | -0.0217 (8) | 0.1603 (2) | 0.0421 (7) | 0.038 (4) |


|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| N21 | $-0.0899(8)$ | $0.0814(2)$ | $0.0305(7)$ | $0.036(4)$ |
| N22 | $0.1808(7)$ | $0.0648(2)$ | $0.2031(7)$ | $0.035(4)$ |
| N31 | $0.1697(8)$ | $0.1048(2)$ | $-0.0270(7)$ | $0.038(4)$ |
| N32 | $0.2840(8)$ | $0.1408(2)$ | $0.2063(7)$ | $0.038(4)$ |
| C11 | $-0.002(1)$ | $0.1052(3)$ | $0.3811(9)$ | $0.044(5)$ |
| C12 | $-0.107(1)$ | $0.1249(3)$ | $0.4295(9)$ | $0.056(5)$ |
| C13 | $-0.168(1)$ | $0.1552(3)$ | $0.339(1)$ | $0.053(5)$ |
| C14 | $-0.096(1)$ | $0.1518(3)$ | $0.2355(9)$ | $0.041(4)$ |
| C15 | $-0.105(1)$ | $0.1730(3)$ | $0.1158(9)$ | $0.046(5)$ |
| C16 | $0.003(1)$ | $0.1846(3)$ | $-0.0597(9)$ | $0.042(4)$ |
| C17 | $-0.020(1)$ | $0.1722(3)$ | $-0.1960(9)$ | $0.049(5)$ |
| C18 | $-0.006(1)$ | $0.1963(3)$ | $-0.297(1)$ | $0.057(6)$ |
| C19 | $0.032(1)$ | $0.2332(3)$ | $-0.2621(9)$ | $0.053(5)$ |
| C21 | $-0.238(1)$ | $0.0854(3)$ | $-0.0559(9)$ | $0.047(5)$ |
| C22 | $-0.317(1)$ | $0.0513(3)$ | $-0.066(1)$ | $0.057(6)$ |
| C23 | $-0.210(1)$ | $0.0251(3)$ | $0.016(1)$ | $0.059(5)$ |
| C24 | $-0.069(1)$ | $0.0445(3)$ | $0.0791(9)$ | $0.042(4)$ |
| C25 | $0.0844(9)$ | $0.0364(2)$ | $0.1713(9)$ | $0.039(4)$ |
| C26 | $0.341(1)$ | $0.0568(2)$ | $0.2838(9)$ | $0.040(5)$ |
| C27 | $0.448(1)$ | $0.0525(3)$ | $0.2160(9)$ | $0.041(5)$ |
| C28 | $0.602(1)$ | $0.0445(3)$ | $0.2937(9)$ | $0.050(6)$ |
| C29 | $0.649(1)$ | $0.0408(3)$ | $0.436(1)$ | $0.043(5)$ |
| C31 | $0.130(1)$ | $0.0861(3)$ | $-0.149(1)$ | $0.051(5)$ |
| C32 | $0.245(1)$ | $0.0923(4)$ | $-0.213(1)$ | $0.075(7)$ |
| C33 | $0.353(1)$ | $0.171(4)$ | $-0.124(1)$ | $0.071(6)$ |
| C34 | $0.306(1)$ | $0.1243(3)$ | $-0.0084(9)$ | $0.048(5)$ |
| C35 | $0.366(1)$ | $0.1429(3)$ | $0.1230(9)$ | $0.048(5)$ |
| C36 | $0.3477(9)$ | $0.1566(3)$ | $0.3447(8)$ | $0.035(4)$ |
| C37 | $0.494(1)$ | $0.1453(3)$ | $0.433(1)$ | $0.047(5)$ |
| C38 | $0.562(1)$ | $0.1599(3)$ | $0.569(1)$ | $0.054(6)$ |
| C39 | $0.477(1)$ | $0.1852(3)$ | $0.6158(9)$ | $0.054(6)$ |
| C110 | $0.061(1)$ | $0.2468(3)$ | $-0.129(1)$ | $0.070(6)$ |
| C111 | $0.049(1)$ | $0.2225(3)$ | $-0.027(1)$ | $0.061(6)$ |
| C210 | $0.548(1)$ | $0.0456(3)$ | $0.508(1)$ | $0.054(6)$ |
| C211 | $0.393(1)$ | $0.0540(3)$ | $0.4304(9)$ | $0.048(5)$ |
| C310 | $0.330(1)$ | $0.1963(3)$ | $0.531(1)$ | $0.059(6)$ |
| C311 | $0.266(1)$ | $0.1817(3)$ | $0.396(1)$ | $0.059(6)$ |
|  |  |  |  |  |

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

| Co-N11 | $1.924(8)$ | $\mathrm{N} 21-\mathrm{C} 24$ | $1.38(1)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Co}-\mathrm{N} 21$ | $1.908(7)$ | $\mathrm{N} 22-\mathrm{C} 25$ | $1.30(2)$ |
| $\mathrm{Co}-\mathrm{N} 31$ | $1.900(8)$ | $\mathrm{N} 31-\mathrm{C} 34$ | $1.38(1)$ |
| $\mathrm{Co}-\mathrm{N} 12$ | $1.991(7)$ | $\mathrm{N} 32-\mathrm{C} 35$ | $1.31(1)$ |
| $\mathrm{Co}-\mathrm{N} 22$ | $1.933(7)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1.40(1)$ |
| $\mathrm{Co}-\mathrm{N} 32$ | $1.971(6)$ | $\mathrm{C} 24-\mathrm{C} 25$ | $1.42(2)$ |
| $\mathrm{N} 11-\mathrm{C} 14$ | $1.37(1)$ | $\mathrm{C} 34-\mathrm{C} 35$ | $1.41(1)$ |
| $\mathrm{N} 12-\mathrm{C} 15$ | $1.32(1)$ |  |  |
| $\mathrm{N} 11-\mathrm{Co}-\mathrm{N} 12$ | $82.5(3)$ | $\mathrm{N} 11-\mathrm{Co}-\mathrm{N} 21$ | $87.3(3)$ |
| $\mathrm{N} 11-\mathrm{Co}-\mathrm{N} 22$ | $92.9(3)$ | $\mathrm{N} 11-\mathrm{Co}-\mathrm{N} 31$ | $177.8(3)$ |
| $\mathrm{N} 11-\mathrm{Co}-\mathrm{N} 32$ | $96.9(3)$ | $\mathrm{N} 12-\mathrm{Co}-\mathrm{N} 21$ | $93.9(3)$ |
| $\mathrm{N} 12-\mathrm{Co}-\mathrm{N} 22$ | $174.7(3)$ | $\mathrm{N} 12-\mathrm{Co}-\mathrm{N} 31$ | $95.3(3)$ |
| $\mathrm{N} 12-\mathrm{Co}-\mathrm{N} 32$ | $89.7(3)$ | $\mathrm{N} 21-\mathrm{Co}-\mathrm{N} 22$ | $83.1(3)$ |
| $\mathrm{N} 21-\mathrm{Co}-\mathrm{N} 31$ | $93.2(3)$ | $\mathrm{N} 21-\mathrm{Co}-\mathrm{N} 32$ | $174.8(3)$ |
| $\mathrm{N} 22-\mathrm{Co}-\mathrm{N} 31$ | $89.3(3)$ | $\mathrm{N} 22-\mathrm{Co}-\mathrm{N} 32$ | $93.6(3)$ |
| $\mathrm{N} 31-\mathrm{Co}-\mathrm{N} 32$ | $82.6(3)$ |  |  |

The title structure was solved by Patterson and Fourier methods, and refined by a full-matrix least-squares procedure, with anisotropic displacement parameters for the non-H atoms. H atoms were placed in calculated positions.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP-VAX (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986). Program(s) used to refine structure: SDPVAX. Molecular graphics: ORTEPII (Johnson, 1976).

[^0]
## References

Castro, J. A., Romero, J., García-Vázquez, J. A., Durán, M. L., Sousa, A., Castellano, E. E. \& Zukerman-Schpector, J. (1992). Polyhedron, 11, 235-241.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press. [Version 3.0 (1986).]
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oldham, C. \& Tuck, D. G. (1982). J. Chem. Ed. 59, 420-421.
Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 2736-2738

## 7-Methyl-3-adeninium Trichloro(7-methyl-adenine- $N^{9}$ )zinc(II) Hydrate

Cherie L. Price and Max R. Taylor<br>Department of Chemistry, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia. E-mail: max.taylor@flinders.edu.au

(Received 30 January 1996; accepted 4 July 1996)


#### Abstract

The crystal structure of the title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{5}\right)$ [ $\left.\mathrm{ZnCl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, contains 7-methyladeninium cations protonated at the N3 atom and trichloro(7methyladenine)zinc(II) anions, with the Zn atom tetrahedrally coordinated by the N9 atom and three chlorine ligands. Both species are present as hydrogen-bonded centrosymmetric dimers stacked alternately in columns in the crystal.

\section*{Comment}

The title compound, (1), was isolated in the course of an ongoing program of research into the metal complexes of heterocyclic bases. The N7 site of adenine is favoured for coordination of zinc when it is available, e.g. dichlorobis(purine)zinc(II) (Laity \& Taylor, 1995), trichloro(adeninium)zinc(II) (Taylor, Vilkins \& McCall, 1989) and trichloro(purinium)zinc(II) (Sheldrick, 1982), although N1 can also be a binding site, e.g. trichloro(9methyladeninium)zinc(II) (McCall \& Taylor, 1975). In this work, the intention was to study the coordination of zinc to adenine when the favoured N 7 position is blocked.



(1)

The structure of (1) consists of trichloro(7-methyladenine)zinc(II) anions and protonated 7-methyladenine cations (Fig. 1). Zinc is coordinated via the N9 atom and its approximate tetrahedral stereochemistry is completed by three chlorine ligands. These metal-complex anions occur in the structure as centrosymmetric hydro-gen-bonded dimers, with an N11-H.NN1 distance of 3.007 (3) $\AA$ [symmetry code: (i) $1-x, 2-y, 1-z$ ]. The Zn atom lies 0.382 (2) $\AA$ from the least-squares plane of the purine framework. The other 7-methyladenine moiety is protonated at the N3 position. This is a surprising result as Nl is the usual site of protonation in adenine and its derivatives, although N 3 is protonated in 7-methyladenine dihydrochloride (Kistenmacher \& Shigematsu, 1975). The internal angle at N3 shows an expansion of about $5^{\circ}$ when compared with the corresponding angle in the coordinated base; this is characteristic of protonation of N in this ring (Table 2). In the crystal structure, these cations also occur as dimers, hydrogen bonded across another centre of symmetry, with an N3'-H $\cdots{ }^{\prime} 9^{\prime \prime 1}$ distance of 2.790 (3) $\AA$ [symmetry code: (ii) $-x, 2-y, 1-z$ ]. It is possible that the occurrence of these dimers leads to the N3(H) tautomer being the stable form in the solid. Hydrogen bonds link the moieties in the structure, e.g. $\mathrm{Nll}^{\prime}-\mathrm{Hll}^{\prime} \cdots \mathrm{Cl} 1^{\mathrm{iii}}$ of length 3.492 (2) $\AA$ [symmetry code: (iii) $1-x, 1-y$, $1-z]$.


Fig. 1. A perspective drawing of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are drawn as circles with arbitrary radii.

The dimeric cations and anions are alternately stacked in columns running parallel to the $a$ axis (Fig. 2). The

Acta Crystallographica Section C ISSN 0108-2701 © 1996


[^0]:    Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1109). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

